ToO update from MIRO Anthony Lethuillier¹, Paul von Allmen¹, Mark Hofstadter¹, Gerard Beaudin⁴, Nicolas Biver², Dominique Bockelee-Morvan², Mathieu Choukroun¹, Jacques Crovisier², Bjorn Davidsson¹, Pierre Encrenaz⁴, Therese Encrenaz², Margaret Frerking¹, Adeline Gicquel¹, Samuel Gulkis¹, Paul Hartogh⁵, Wing-Huen Ip⁶, Michael A. Janssen¹, Christopher Jarchow⁵, Seungwon Lee¹, Emmanuel Lellouch², Cedric Leyrat², Ladislav Rezac⁵, Peter Schloerb³, Thomas R. Spilker⁷ ¹Jet Propulsion Laboratory/Calif. Inst. Tech., Pasadena, CÁ, United States. ²LESIA-Observatoire de Paris, Meudon, 92195, France. ³University of Massachusetts, Amherst, MA, United States. ⁴LERMA-Observatoire de Paris, Paris, 75014, France. ⁵Max-Planck-Institut für Sonnensystemforschung, Göttingen, 37077, Germany. ⁶National Central University, Taoyuan City, 32001, Taiwan. ⁷Solar System Science and Exploration, Los Angeles, CA, United States. © 2017 California Institute of Technology. Government sponsorship acknowledged. - 1. Context and Model - 2. Results and Interpretations - 3. Conclusions and Perspectives #### The first ToO: • Is Located in the Imhotep region of the comet. Figure 1: NAVCAM image of the Imhotep region with indicated the 2014 and 2016 swaths. Copyright: ESA/Rosetta/NAVCAM - 1. Context and Model - 2. Results and Interpretations - 3. Conclusions and Perspectives #### The first ToO: - Is Located in the Imhotep region of the comet. - First observation: October 27th 2014 as a single swath. Figure 1: NAVCAM image of the Imhotep region with indicated the 2014 and 2016 swaths. Copyright: ESA/Rosetta/NAVCAM - 1. Context and Model - 2. Results and Interpretations - 3. Conclusions and Perspectives #### The first ToO: - Is Located in the Imhotep region of the comet. - First observation: October 27th 2014 as a single swath. - Second observation: July 9th 2016 as a raster scan. Figure 1: NAVCAM image of the Imhotep region with indicated the 2014 and 2016 swaths. Copyright: ESA/Rosetta/NAVCAM - 1. Context and Model - 2. Results and Interpretations - 3. Conclusions and Perspectives #### The first ToO: - Is Located in the Imhotep region of the comet. - First observation: October 27th 2014 as a single swath. - Second observation: July 9th 2016 as a raster scan. - Objective: observe the same area twice with similar high spatial resolution. Figure 1: NAVCAM image of the Imhotep region with indicated the 2014 and 2016 swaths. Copyright: ESA/Rosetta/NAVCAM ### Measurements - 1. Context and Model - 2. Results and Interpretations - 3. Conclusions and Perspectives Figure 2: NAVCAM image of the Imhotep region with indicated the 2014 and 2016 swaths. Copyright: ESA/Rosetta/NAVCAM | Resolution | SMM | MM | |--------------|---------------|----------------| | October 2014 | $\approx 20m$ | $\approx 60 m$ | | July 2016 | ≈ 30 <i>m</i> | ≈ 90 <i>m</i> | The 2016 raster scan intersected the 2014 swath a total of 14 times. ### Thermal and radiative model - 1. Context and Model - 2. Results and Interpretations - 3. Conclusions and Perspectives Figure 3: Simplified thermal model of the subsurface of 67P/C-G, indicating the processes at play ### Thermal and radiative model - 1. Context and Model - 2. Results and Interpretations - 3. Conclusions and Perspectives # Best fitting parameters in 2014 and 2016 - 1. Context and Model - 2. Results and Interpretations - 3. Conclusions and Perspectives ## Best fit for both times 160 - 1. Context and Model - 2. Results and Interpretations 80 12 ## Thermal inertia of the subsurface - 1. Context and Model - 2. Results and Interpretations - 3. Conclusions and Perspectives | Instrument | Region (date) | Thermal Inertia | |--------------------|----------------------------------|-----------------| | MIRO ¹ | All nucleus (2014) | 10 - 50 | | MIRO ² | Imhotep and Ash (September 2014) | 10 – 30 | | MUPUS ³ | Abydos (November 2014) | 50 — 120 | | MIRO ⁴ | Imhotep ToO (September 2014) | 80 — 95 | $^{^{1}}$ Gulkis et al. (2015) 2 Schloerb et al. (2015) 3 Spohn et al. (2015) 4 This work # Porosity of the subsurface - 1. Context and Model - 2. Results and Interpretations - 3. Conclusions and Perspectives | Instrument | Depth sounded | Porosity | |------------------------|--------------------|----------| | CONSERT ¹ | Hundreds of meters | 75 - 85% | | SESAME-PP ² | First meter | < 50% | | MIRO ⁴ | 10 cm | 50 - 60% | | MUPUS ³ | Near surface | 30 - 65% | 1 Kofman et al. (2015) 2 Lethuillier et al. (2016) 3 Spohn et al. (2015) 4 This work - 1. Context and Model - 2. Results and Interpretations - 3. Conclusions and Perspectives The model used in this work offers a powerful tool to investigate the subsurface of 67P/C-G using MIRO data and can help constrain the composition of the subsurface and its evolution through time. - 1. Context and Model - 2. Results and Interpretations - 3. Conclusions and Perspectives - The model used in this work offers a powerful tool to investigate the subsurface of 67P/C-G using MIRO data and can help constrain the composition of the subsurface and its evolution through time. - More parameters need to be investigated in order to better fit the measurements of the Imhotep ToO. - 1. Context and Model - 2. Results and Interpretations - 3. Conclusions and Perspectives - The model used in this work offers a powerful tool to investigate the subsurface of 67P/C-G using MIRO data and can help constrain the composition of the subsurface and its evolution through time. - More parameters need to be investigated in order to better fit the measurements of the Imhotep ToO. - For this a MCMC algorithm will be used in future work. - 1. Context and Model - 2. Results and Interpretations - 3. Conclusions and Perspectives - The model used in this work offers a powerful tool to investigate the subsurface of 67P/C-G using MIRO data and can help constrain the composition of the subsurface and its evolution through time. - More parameters need to be investigated in order to better fit the measurements of the Imhotep ToO. - For this a MCMC algorithm will be used in future work. - MIRO made observations of Imhotep at other times, and these will be included in future studies.